

UNIVERSITÀ DEGLI STU

FACOLTÀ DI SCIENZE MATEMATICHE FISICHE E NATURALI
TESI DI LAUREA MAGISTRALE IN MATEMATICA

PUNTI-FISSI
nel

LAMBDA-CALCOLO

--- SINTESI ---

RELATORE REFERENTI

Lorenzo Tortora de Falco Hendrik Pieter Barendregt

 Jan Willem Klop

CANDIDATO

Marco Buttafoco

ANNO ACCADEMICO 2009-2010
LUGLIO 2010

2

ABSTRACT

Fixed-Point are classical notions belonging to the heart of lambda-calculus and logic.
We start with an explanation of the syntax of lambda-calculus, proving some principal
properties and introducing the more general concept of reduction system. We then
introduce combinators (lambda-terms
fixed-point combinator (defined by Curry, Turing and Klop). We prove that every

-term built using only combinators and , and
we use fixed-point combinators to represent in the lambda-calculus every computable
function.
The well-known fact that if is a fixed-point combinator then is again a fixed-point
combinator, generates the Böhm sequence of fixed-point combinators.
Using combinators , and we build up two new sequences of FPCs, known as Scott
and Klop sequences, and we present some generalization schemes to build infinitely many
fixed-point combinators. In this way we find schemes and building blocks to construct
new fixed-point combinators in a modular way. Having created a plethora of new fixed-
point combinators, the task is to prove that they are indeed new, that is, we have to prove
their -inconvertibility. Known techniques using Böhm trees do not apply, because all
fixed-point combinators have the same Böhm tree. One of the tools we use to distinguish
fixed-point combinators is the notion of clocked Böhm tree, that convey information of
the tempo in which the data in the Böhm trees are produced.

INTRODUCTION

The theory of -calculus was introduced around 1930 by Alonzo Church [Chu41] as the

kernel of an investigation in the foundation of mathematics and logic, in which the notion

of function instead of set was taken as primitive. Subsequently, -calculus emerged

as a consistent fragment of the original system, which became a key tool in the study of

computability and, with the rise of computers, the formal basis of the functional

programming paradigm. Today, -calculus plays an important role as a bridge between

logic and computer science, which explains the general interest in this formalism among

computer scientists.

Bar84], a wealth of interesting

problems about models and theories of the (untyped) -calculus are still open.

After proving some important theorems described in [Bar84], the aim of this thesis is to

create new fixed-point combinators from old ones. At the same time we will find a

method for proving their -inconvertibility.

3

OUTLINE

In Chapter 1 we recall some known results concerning the (untyped and typed)

-calculus and we introduce the more general concept of reduction system. In Chapter 2

the combinatory logic is introduced: some fixed-point combinators (Curry, Turing, and

Klop) are described, dealing with some important properties. After introducing a method

ooleans with lambda-terms, in Chapter 3 we prove

that all recursive functions are lambda-definable. Chapter 4 is completely dedicated to

Böhm-trees, the natural infinite generalization of normal forms in pure lambda-calculus.

Chapter 5 is devoted to the construction of new fixed-point combinators in modular way.

In Chapter 6 we show that all new fixed-point combinator are really new, that is we

prove their not -equivalence.

To keep this paper as self-contained as possible, first of all we summarize some

definitions and results used below. With regard to the -calculus we follow the notation

and terminology of [Bar84].

PUNTI-FISSI NEL LAMBDA-CALCOLO

The two primitive notions of the -calculus are application, the operation of applying a

function to an argument, and lambda-abstraction, the process of forming a function from

The set of -terms (notation) over an infinite set of variables using application and

(function) abstraction is constructed inductively as follows: every variable is a

-term; if and are -terms, then so are and for each .

The lambda abstraction is a binder. An occurrence of a variable in a -term is bound if

it lies within the scope of a lambda-abstraction ; otherwise it is free. We denote by
 the set of all free variables of and we say that is closed (or is a combinator)

if . We write or for the term resulting from the

substitution of for all free occurrences of in subject to the usual proviso about

renaming bound variables in to avoid capture of free variables in .

.

4

The basic axioms of -calculus are the following:

, for any variable that does not occur free in .

.

The rules for deriving equations from instances of and are the usual ones from

equational calculus asserting that equality is a congruence for application and lambda-

abstraction.

Extensional -calculus adds another axiom, which equates all the -terms having the

same extensional behavior:

, in which does not occur free in .

If two -terms are provably equal using the rule , we say that they are -equivalent or

-convertible (and similarly for and). In this work we identify all -equivalent

-terms, thus every -term in fact represents a class of -equivalent terms. We write

 when is -equivalent to .

Strictly speaking, means that reduces to by exactly one reduction step,

possibly applied to a subterm of . Frequently, we are interested in whether can be

reduced to by any number of steps. Write if

.

Informally, if can be transformed into by performing zero or more

reductions and expansions (an expansion is the inverse of a reduction). A typical picture

is the following:

If a term admits no reductions then it is in normal form. To normalize a term means to

apply reductions until a normal form is reached. A term has a normal form if it can be

reduced to a term in normal form.

A term is in head normal form (hnf, for short) if and only if it looks like this:

in which is a variable ().

5

Notice that a term in normal form is also in hnf. Furthermore, if

then must have the form

in which . Thus, the hnf fixes the outer structure of any further

reductions and the final normal form (if any!).

A -term is defined if and only if it can be reduced to head normal form; otherwise, it is

undefined. A term is solvable if and only if there exist variables and terms

 such that . It can be proved that a

term is solvable if and only if it has a head normal form if and only if there is a

reduction sequence only composed of head steps such that (one writes).

The head reduction step of a term is the (finite or infinite) sequence of terms

 such that and is obtained from by a -reduction step

of the head redex of if such a redex exists; if not, is in head normal form, and the

sequence ends with .

One of the fundamental relationships between the properties of reduction systems is the

Church-Rosser property that states that reduction in -calculus is confluent; no two

sequences of reductions, starting from one -term, can reach a distinct normal form. The

normal form of a term is independent of the order in which reductions are performed.

For instance, has two different reduction sequences, both leading to

the same normal form. The affected subterm is underlined at each step:

This property has several important consequences:

o if and is in normal form, then ; if a term can transform into

normal form through reductions and expansions, then the normal form can be

reached by reductions alone;

o if in which both terms are in normal form, then If and are

in normal form and are distinct, then .

Although different reduction sequences cannot yield different normal forms, they can

yield completely different outcomes; one could terminate whereas the other runs forever.

6

Typically, if has a normal form and admits an infinite reduction sequence, it contains a

subterm having no normal form, and can be erased by a reduction.

For example, -reduces to itself and

therefore no normal form exist.

The -calculus is expressive enough to encode Boolean values and natural numbers.

More generally, all the data structures we may desire in a functional program. These

encodings allow us to virtually model the whole of functional programming within the

simple confines of -calculus. An encoding of the Booleans must define the terms true

(and false (), satisfying (for all terms and)

The following encoding is usually adopted:

We have by the Church Rosser property, since true and false are distinct normal

forms.

All the usual operations on truth values can be defined, so as conditional operator. Here

conjunction, disjunction, and negation are described:

and

or

not

The following encoding of the natural numbers is the original one developed by Church.

Define

;

;

;

in which is defined by induction as follows:

- ;

- .

Thus, for all , the Church numeral acts as an iteration (-times) of its original.

Using this encoding, successor, addition, and multiplication can be defined immediately:

7

succ

sum

prod

The operations defined so far are not sufficient to define all computable functions on the

natural numbers. The secret is to use a fixed-point combinator (FPC), that is a term

such that , for all -terms . Let us explain the terminology. A fixed-point

of the function is any such that ; here, . To code recursion,

represents the body of the recursive definition; the law permits to be

unfolded as many times as necessary. Moreover, an FPC is reducing (resp. -reducing)

if for any -term we have (resp. , in which represent the

number of the head reduction steps).

There exists infinitely-many FPCs. The most well known is due to Haskell B. Curry and

is defined as follows:

.

 ia an FPC but not a reducing-FPC.

There are other FPCs, such as that of A. Turing:

We indeed have the reduction .

From

in which ,

we are able to build up a new class of FPCs [this resolves the Problem 6.8.14. in Bar84].

After showing some important properties of FPCs (such as one which proves that every

FPC is solvable but not normalizable) we see that all operations of -calculus can be

expressed in a reduced version of untyped -calculus, the so called SK-calculus.

The importance of a fixed-point lies, however, in the fact that they allow us to solve

equations. Therefore, FPCs are essential tools to represent all computable functions.

Since -calculus is one of the classical models of computation, along with Turing

machines and general recursive functions, Chur states that the computable

functions are precisely those that are -definable. After defining constant, projection, and

minimization operators, we prove that -calculus has the same power as the partial

recursive functions, i.e., that all partial recursive functions are -definable. Therefore, the

8

following definition is fundamental.

Let be a (partial) function defined on , with values either in or in . We say

that is -definable if there is a -term such that for all we have:

 if is undefined, then is not solvable;

 if , then ;

 if (resp.), then (resp.).

We say that represents the function and is representable by the term .

The behavior of FPCs are characterized by Böhm-trees (, for short). We show how to

progressively compute successive approximations of a term, in a potentially infinite

partial structure called the Böhm-tree of a -term, which represents the limit of all

-reductions issued from a given term. It consists of layers of approximations, each

approximation corresponding to an hnf. The formal definition of Böhm trees can be

found with all its details in this thesis. Below, an informal definition of Böhm-tree is

given. Note that this definition is not an inductive definition of ; the in

the tail of an hnf of a term may be more complicated then the term itself.

To each a Böhm-tree, , is associated as follows:

 if is solvable then () and we define:

i.e., level of is known. By iteration we find all levels.

 otherwise, if is unsolvable (equivalently, has no hnf) we have: .

Notice that all unsolvable terms have the same , namely . We prove in the thesis that

all FPCs have the same with the same infinite extension .

It is possible to show, by means of induction on the depth of the tree, that the given

definition of is compatible with -equivalence, i.e., that

.

in which . The converse is not valid.

Owing to the equivalence of the s, we now propose to provide a method to inductively

build up infinite FPCs. In particular, we can show how a new FPC (resp. reducing FPC)

9

can be built up from a given FPC (resp. reducing FPC). To show this, we use the

-term . A first remark is that the term is an FPC whenever is. It

follows that starting with

in which means -times, called the Böhm sequence of . The same sequence

can also be defined as follows in which is Turing :

 for

Now the question is whether all these

whether the sequence is free of duplicates [this resolves the Problem 6.8.9. in Bar84].

After defining, by induction on , the following set of languages ,

we show that the Böhm sequence contains no duplicates, that is:

for all such that , we have .

For the sequence starting from an arbitrary FPC , it is actually an open problem whether

the sequence of FPCs is free of repetition. All we know, applying
1, is that no two consecutive FPCs in this sequence are

-convertible, i.e., for every FPC one has .

Our next purpose is to build up a new sequence of FPCs starting from the combinators

, and as defined above. To do this, we can consider, for any FPC , the following

sequence:

All these terms are not FPCs, but they are close to being FPCs since for the first two

terms of the sequence, postfixing the combinatory turns them into FPCs and , and

postfixing an to all the terms in the sequence, yielding

1 Problem n. 52 in the problem list of: N. Dershowitz, J.P. Jouannaud, J.W. Klop, More problem in

rewriting, in Rewriting Techniques and Applications (C. Kirchner Ed.), Lectures Notes in Computer
Science, volume 690, pages 468-487, Springer-Verlag, Berlin, 1993.

10

we obtain a sequence of terms having the same as any FCP. We refer to the previous

sequence as the Scott sequence of .

In particular, we can consider the Scott sequence with). In this way,

we can define the -term by induction on as follows:

All these terms turn out to be FPCs, and in showing that are indeed FPCs, we

find, as a bonus, a new FPC-generating vector, turning an old FPC into a new one:

. Let us call the derivation principle from Böhm, stating that postfixing a

yields a new FPC: principle . Now we have a second derivation principle, let us call it

, stating that postfixing to an FPC a vector of terms yields a new FPC. We

can arbitrarily apply derivation principles and , and so obtain, starting from a

given FPC, a whole branch of new FPCs.

In this way, we find some schemes and building blocks to construct new fixed-point

combinators in a modular way. Through one of these schemes we can formulate the so

called Klop sequence:

All terms of this sequence are FPCs and the sequence coincides (when) with the

Böhm and Scott sequences for only the first two elements.

Since there are several vast spaces of FPCs and there are many ways to derive new FPCs,

the last question is whether all these FPCs are indeed new. Therefore, we have to prove

that they are not -equivalent one another.

Since it is not possible to distinguish FPCs through their Böhm-tree (remember that any

FPCs have the same), we use the clocked Böhm-trees (i.e., Böhm-trees in which we

count the number of head reduction steps): we can discern a clock-like behavior of

Böhm-trees, that enables us to discriminate the terms in question.

However, this refined discrimination method does not work for all lambda-terms; only for

a class of simple terms, that still is fairly extensive.

Therefore, the following two definitions are essential.

11

For FPC , the clock reduction of consists of a sequence of head reduction steps

(-steps) and when no head steps are possible because the term is an hnf (i.e., in the form

) there is a -step that removes the head context or respectively:

 and .

We than define simple-terms: a -term is simple if if either has no head normal form,

or the head reduction to head normal form contracts only

simple redexes (i.e., a linear or call-by-value redexes), and are simple terms.

This notation leads to the following proposition:

if and are simple terms with different clocks, then .

It is in this way that the non -equivalence of the created fixed-point combinators can be

shown.

Several examples can be found in the thesis. Below we write the standard algorithm for

discriminate all FPCs:

(1) take a sequence of FPCs;

(2) reduce the sequence to a simple term;

(3) compute the clock reduction of the simple term;

(4) if all the simple terms have different clock, then FPCs are pairwise different.

We conclude by computing the algorithm for the sequence of FPC of the

Scott sequence of , with .

We first reduce to a simple term:

where . Then we compute the clock for , and .

For we have:

.

For we have:

.

For we have:

.

12

For all cases, we find:

.

Therefore, given any two terms and of the Scott sequence of , if then

.

By losing some information (but keeping the essential), Figure 1 displays the clocked

Böhm-trees of the Scott sequence of

Figure 1 clocked Böhm-tree of

13

BIBLIOGRAFIA

[Abd76] ABDALI S.K.
 [1976] An abstraction algorithm for Combinatory Logic, The Journal of Symbolic Logic,

volume 41, number 1.

[Ada97] ADAMOWICZ Z., ZBIERSKI P.
 [1997] Logic of Mathematics, Wiley Series in Pure and Applied Mathematics.

[Ama98] AMADIO R.M., CURIEN P.L.
 [1998] Domains and lambda-calculi, Cambridge University Press.

[Ati69] ATIYAH M.F., MACDONALD I.G.
 [1969] Introduction to Commutative Algebra, Westview Press.

[Aus03] AUSIELLO G., AMORE F., GAMBOSI G.
 [2003] Linguaggi, Modelli, Complessità, Scienze e Tecnologie Informatiche, Franco

Angeli Edizioni, Milano.

[Bar76] BARENDREGT H., BERGSTRA J., KLOP J.W., VOLKEN H.
 [1976] Some note on lambda reduction, Chapter II in Degrees, reductions and

representability in the lambda calculus, Technical Report Preprint number 22,
University of Utrecht, Department of Mathematics.

[Bar84] BARENDREGT H.

 [1984] The Lambda Calculus: its syntax and semantics, second, revisited edition,
volume 103, North-Holland, Amsterdam.

[Bar92] BARENDREGT H., ABRAMSKY S., GABBAY D.M., MAIBAUM T.S.E.

 [1992] Lambda calculi with types, Handbook of Logic in Computer Science, volume II,
pages 117-309, Oxford University Press.

[Bar00a] BARENDREGT H., BARENDSEN E.

 [2000] Introduction to lambda calculus, revised edition, University of Goteborg,
Sweden.

[Bar00b] BARENDREGT H., GHILEZAN S.

 [2000] Lambda terms for natural deduction, sequent calculus and cut elimination,
Journal of Functional Programming, number 10, pages 121-134, Cambridge University
Press.

[Bar09] BARENDREGT H., KLOP J.W.

 [2009] Application of Infinitary Lambda Calculus, Information and Computation,
volume 207, number 5, Pages 559-582.

14

[Bar10] BARENDREGT H., DEKKERS W., STATMAN R.
 [2010] Lambda calculus with types, Radboud University, Nijmegen, the Netherlands

(to be published).

[Ber80] BERGSTRA J., KLOP. J.W.
 [1980] Invertible Terms in the Lambda-Calculus, Theoretical Computer Science,

volume 11, number 1, pages 19-37.

[Bez03] BEZEM M., KLOP J.W., DE VRIJER R.
 [2003] Term rewriting systems

[Böh68] BÖHM C.
 [1968] Alcune proprietà delle forme - -normali nel - -calcolo, Pubblicazioni

, numero 696, pagine 1-19.

[Böh75] BÖHM C.
 [1975] -calculus and computer science theory, SLNCS 37, Springer-Verlag, Berlin.

[Bro76] BROWDER F.E..
 [1976] Mathematical developments arising from Hilbert Problems, Proceedings of

symposia in pure mathematics, American Mathematical Society, volume XXVIII.

[Chu36a] CHURCH A., ROSSER J.B.
 [1936] Some Properties of Conversion, Transaction of the American Mathematical

Society, volume 39, number 3, pages 474-482.

[Chu36b] CHURCH A.
 [1936] An unsolvable Problem of Elementary Number Theory, American Journal of

Mathematics, volume 58, number 2, pages 345-363.

[Chu40] CHURCH A.
 [1940] A formulation of the simple theory of types, The Journal of Symbolic Logic,

volume 5, number 2: pages 56-68.

[Chu41] CHURCH A.
 [1941] The Calculi of Lambda-Conversion, Princeton University Press, Annals of

Mathematics Studies, number 6.

[Cor01] CORI R., LASCAR D.
 [2001] Mathematical Logic: A Course with Exercise, Part I-II, traslated by D.H.

Pellefier, Oxford University Press.

[Cor09] CORMEN T.H., LEISERSON C.E., RIVEST R.L., STEIN C.
 [2009] Introduction to algorithm, McGraw-Hill, Third edition.

[Cur98a] CURIEN P.L.
 [1998] Abstract Böhm trees, Mathematical Structures in Computer Science, number 8,

pages 559-591.

15

[Cur98b] CURIEN P.L., HERBELIN H.
 [1998] Computing with abstract Böhm trees, Third Fuji International Symposium on

Functional and Logic Programming, Kyoto, Eds Masahiko Sato & Yoshihito Toyama,
World Scientific (Singapore), pages 20-39.

[Cur34] CURRY H.B.

 [1934] Functionality in Combinatory Logic, Proceedings of the National Academy of
Sciences USA, volume 20, pages 584-590.

[Cur58] CURRY H.B., FEYS R.

 [1958] Combinatory Logic, Studies in Logic and the Foundations of Mathematics,
volume I, North-Holland, Amsterdam.

[Cur72] CURRY H.B.

 [1972] Combinatory Logic, Studies in Logic and the Foundations of Mathematics,
volume II, North-Holland, Amsterdam, Elsevier.

[Dav99] DAVIS P.J., HERSH R..

 [1999] The Mathematical Experience, Meriner Books.

[Dav03] DAVIS M.
 [2003] Il calcolatore universale: da Leibnitz a Turing, traduzione di G. Rigamonti,

Adelphi, Milano.

[Dez98] DEZANI-CIANCAGLINI M., INTRIGILA B., VENTURINI-ZILLI M.
 [1998] Böhm s theorem for Böhm trees, Theoretical Computer Science (Prato), pages

1-23. World Science Publishing, River Edge, New Jersey.

[Dub04] DUBBEY J.M.
 [2004] The Mathematical Work of Charles Babbage, Cambridge University Press.

[End10] ENDRULLIS J., GRABMAYER C., HENDRIKS D., ISIHARA A., KLOP J.W.
 [2010] Productivity of Stream Definition, Graphical Lambda Calculator, in

http://joerg.endrullis.de/lambdaCalculator/index.html and http://fspc282.few.vu.nl/
productivity/lambdaCalculator.html.

[Gan36] GANDY R.

 [1936] The Confluence of Ideas, A Half-Century Survive on The Universal Turing
Machines, Oxford University Press, pages 55-111.

[Gau02] GAUTHIER Y.

 [2002] Internal Logic, Foundation of Mathematics from Kronecker to Hilbert, Volume
310, Kluwer Academic Publisher.

[Gel09] GELENBE E., KAHANE J.P.

 [2009] , Chapter 1 in Fundamental Concepts in Computer Science,
Advances in Computer Science and Engineering: Texts, volume 3, Imperial College
Press.

16

[Ger96] GERSTEIN L.J.
 [1996] Introductions to Mathematical Structures and Proofs, pages 48-49, Springer-

Verlag, New York.

[Göd31] GÖDEL K.
 [1931] On formally undecidable propositions of principia mathematica and related

systems, Dover edition, English translation of Über formal unentscheidbare Sätze der
Principia Mathematica und verwandter Systeme I, published in the Monatshefte für
Mathematik und Physik, Volume 38, pages 173,198.

[Gol05] GOLDBERG M.

 [2005] On the Recursive Enumerability of Fixed-Point Combinator, BRICS,
Department of Computer Science, University of Haarhus.

[Hei67] VAN HEIJENOORT J.

 [1967] From Frege to Gödel, Letter to Frege (1902), A Source Book in Mathematical
Logic, pages 124-125.

[Her97] HERSH R..

 [1997] What is Mathematics, really?, Oxford University Press.

[Hin72] HINDLEY J.R., LERCHER B., SELDING S.P.
 [1972] Introduction to Combinatory Logic, Volume II, North-Holland, Amsterdam.

[Hin86] HINDLEY J.R., SELDING S.P.
 [1986] Introduction to Combinators and -Calculus, Cambridge University Press, New

York, USA.

[Hue75] HUET G.
 [1975] Unification in Typed Lambda Calculus, in -calculus and Computer Science

Theory. Proceedings of the Symposium Held in Rome, March 25-27, pages 192-212,
Springer-Verlog.

[Hue93] HUET G.

 [1993] An analysis of Böhm s theorem, Theoretical Computer Science, number 121,
pages 145-167.

[Hyl76] HYLAND M.

 [1976] A syntactic characterization of the equality in some models for the lambda
calculus, Journal of the London Mathematical Society, volume 12, number 3, pages
361-370.

[Int97] INTRIGILLA B.

 [1997] Non- ,
Information and Computation, number 137, pages 35-40

[Jun04] JUNG A.

 [2004] A short introduction to the Lambda Calculus, University of Birmingham.

17

[Kas00] KASHIMA R.
 [2000] A Proof of the Standardization Theorem in -calculus, Department of

Mathematical and Computer Science, Tokio Institute of Tecnology, Ookayama,
Meguro, Tokio, 152-8552, Japan.

[Ken95a] KENNAWAY J.R., KLOP J.W., SLEEP M.R., DE VRIES F.J.

 [1995] Infinitary lambda calculus and Böhm models, Proc. Conference on rewriting
Techniques and Application, SLNCS 914, Springer, pages 257-270.

[Ken95b] KENNAWAY J.R., KLOP J.W., SLEEP M.R., DE VRIES F.J.

 [1995] Transfinite Reductions in Orthogonal Term Rewriting System, Information and
Computation, volume 119, number 1, pages 18-38.

[Ken96] KENNAWAY J.R.

 [1996] Transfinite Rewriting, International School on Type Theory and Term
Rewriting, Glasgow.

[Ken97] KENNAWAY J.R., KLOP J.W., SLEEP M.R., DE VRIES F.J.

 [1997] Infinitary lambda calculus, Theoretical Computer Science 175, volume 1, pages
93-125, Non-standard logics and logical aspects of computer science (Kanazawa,
1994).

[Ket05] KETEMA J., SIMONSEN J.G.

 [1995] Infinitary combinatory reduction system, in J. Giesl (ed.), Proceedings of the
16th International Conference on Rewriting Techniques and Applications (RTA 2005),
number 3467 in Lecture Notes in Computer Science, Spinger-Verlag, pages 438-452.

[Kle34] KLEENE S.C., ROSSER J.B.

 [1934] The inconsistence of certain formal logics, Annales of Mathematics, volume 36
number 3, pages 630-637.

[Kle36] KLEENE S.C.

 [1936] Lambda-Definability and Recursiveness, Duke Mathematical Journal, volume 2
pages 340-353.

[Klo00] KLOP J.W., VAN OOSTROM V., DE VRIJER R.

 [2000] A geometric proof of confluence by decreasing diagram, Journal of Logic and
Computation, volume 10, number 3, pages 437-460.

[Klo05] KLOP J.W., DE VRIJER R.

 [2005] Infinitary normalization
L.C. Lamb and J. Woods (eds.), We will show them: Essay in honor of Dov Gabbay,
volume 2, College Publications, pages 169-192.

[Klo07] KLOP J.W.

 [2007] New fixed point combinatory from old, Chapter 16 in Reflection on Type
Theory, -Calculus and the Mind, Barensen E., Capretta V. Geuvers H., Niqui M.
editors.

18

[Klo10] KLOP J.W., ENDRULLIS J., HENDRIKS D.
 [2010] Personal communication during the meeting in The Netherlands.

[Kri93] KRIVINE J.R., CORI R.
 [1993] Lambda-calculus: types and models (English version), Ellis Horwood Series in

Computer and their Application, Masson and Ellis Horwood.

[Lel33] LELAND LOCKE L.
 [1933] The Contribution of Leibniz to the art of Mechanical Calculation, in Scripta

Mathematica I, edited by Ginsburg J., pages 315-321.

[Lon83] LONGO G.
 [1983] Set theoretical models of -calculus, isomorphisms, Annals of Pure and Applied

Logic, volume 24, pages 153-188.

[Mit79] MITSCHKE G.
 [1979] The standardization theorem of -calculus, Zeitschrift für Mathematische Logik

und Grundlagen der Mathematik, volume 25, number 1, pages 29-31.

[New80] NEWMAN M.H.A.
 [1980] , Annales of

Mathematics, volume 43, number 2, pages 223-243.

[Odd89] ODDIFREDDI P.
 [1989] Classical Recursion Theory: The Theory of Function and Sets of Natural

Numbers, volume 125, North-Holland, Amsterdam

[Ped08] PEDICINI M.
 [2008] Dispense ed esercizi del corso di IN2 Modelli di calcolo, Dipartimento di

[Poi97] POINCARÈ J.-H.
 [1936] Scienza e metodo, Einaudi, Torino.

[Sch24] SCHÖNFINKEL M.
 [1924] , Mathematische Annalen 92,

pages 305-316. Translated by Stefan Bauer-
A Source Book in Mathematical

Logic, 1879-1931 (pages 355-366), Harvard University Press.

[Sco75] SCOTT D.
 [1975] Some Philosophical Issue concerning Theories of Combinators, in -calculus

and Computer Science Theory. Proceedings of the Symposium Held in Rome, March
25-27, pages 346-366, Springer-Verlog.

[Sel01] SELINGER P.

 [2001] Lecture notes on the Lambda Calculus, Department of Mathematics and
Statistics, University of Ottawa.

19

[She03] SHEN A., VERESHCHAGIN N.K.
 [2003] Computable Functions, Student Mathematical Library, Volume 19, American

Mathematical Society.

[Sta93] STATMAN R.
 [1993] Some Example of Non-Existent Combinator, Theoretical Computer Science,

volume 121, Issue 1-2, pages 441-448.

[Sør06] SØRENSEN M.H., URZYCZYN P.
 [2006] Lecture on the Curry-Howard Isomorphism, Studies in logic and the foundations

of mathematics, volume 149, Elsevier.

[Tor08] TORTORA DE FALCO L.
 [2008] Dispense ed esercizi del corso MC4 Matematiche Complementari 4, Logica

classica del primo ordine, Dipartimento di Matematica, Università degli Studi di

[Tur36] TURING A.

 [1936] On computable numbers, with an applicative to the Entscheidungproblem,
Proceedings of the London Mathematical Society, volume 42, issue 2, pages 230-265.

[Wad71] WADSWORTH C.P.

 [1971] Semantic and pragmatics of the lambda-calculus, D. Phil Thesis, Oxford
University.

[Wad76] WADSWORTH C.P.

 [1976]
-models of the lambda-calculus, Siam Journal of Computing, volumen 5, issue 3,

pages 488-521.

