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ABSTRACT 
 

Fixed-Point are classical notions belonging to the heart of lambda-calculus and logic. 
We start with an explanation of the syntax of lambda-calculus, proving some principal 
properties and introducing the more general concept of reduction system. We then 
introduce combinators (lambda-terms 
fixed-point combinator (defined by Curry, Turing and Klop). We prove that every 

-term built using only combinators  and , and 
we use fixed-point combinators to represent in the lambda-calculus every computable 
function. 
The well-known fact that if  is a fixed-point combinator then  is again a fixed-point 
combinator, generates the Böhm sequence of fixed-point combinators. 
Using combinators , and  we build up two new sequences of FPCs, known as Scott 
and Klop sequences, and we present some generalization schemes to build infinitely many 
fixed-point combinators. In this way we find schemes and building blocks to construct 
new fixed-point combinators in a modular way. Having created a plethora of new fixed-
point combinators, the task is to prove that they are indeed new, that is, we have to prove 
their -inconvertibility. Known techniques using Böhm trees do not apply, because all 
fixed-point combinators have the same Böhm tree. One of the tools we use to distinguish 
fixed-point combinators is the notion of clocked Böhm tree, that convey information of 
the tempo in which the data in the Böhm trees are produced. 
 

 

INTRODUCTION 
 

The theory of -calculus was introduced around 1930 by Alonzo Church [Chu41] as the 

kernel of an investigation in the foundation of mathematics and logic, in which the notion 

of function  instead of set  was taken as primitive. Subsequently, -calculus emerged 

as a consistent fragment of the original system, which became a key tool in the study of 

computability and, with the rise of computers, the formal basis of the functional 

programming paradigm. Today, -calculus plays an important role as a bridge between 

logic and computer science, which explains the general interest in this formalism among 

computer scientists. 

Bar84], a wealth of interesting 

problems about models and theories of the (untyped) -calculus are still open. 

After proving some important theorems described in [Bar84], the aim of this thesis is to 

create new fixed-point combinators from old ones. At the same time we will find a 

method for proving their -inconvertibility. 
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OUTLINE 

In Chapter 1 we recall some known results concerning the (untyped and typed)  

-calculus and we introduce the more general concept of reduction system. In Chapter 2 

the combinatory logic is introduced: some fixed-point combinators (Curry, Turing, and 

Klop) are described, dealing with some important properties. After introducing a method 

ooleans with lambda-terms, in Chapter 3 we prove 

that all recursive functions are lambda-definable. Chapter 4 is completely dedicated to 

Böhm-trees, the natural infinite generalization of normal forms in pure lambda-calculus. 

Chapter 5 is devoted to the construction of new fixed-point combinators in modular way. 

In Chapter 6 we show that all new fixed-point combinator are really new, that is we 

prove their not -equivalence. 

 

To keep this paper as self-contained as possible, first of all we summarize some 

definitions and results used below. With regard to the -calculus we follow the notation 

and terminology of [Bar84]. 

 

 

PUNTI-FISSI NEL LAMBDA-CALCOLO 
 

The two primitive notions of the -calculus are application, the operation of applying a 

function to an argument, and lambda-abstraction, the process of forming a function from 

 

The set of -terms (notation ) over an infinite set of variables  using application and 

(function) abstraction is constructed inductively as follows: every variable  is a  

-term; if  and  are -terms, then so are  and  for each . 

The lambda abstraction is a binder. An occurrence of a variable  in a -term is bound if 

it lies within the scope of a lambda-abstraction ; otherwise it is free. We denote by  
 the set of all free variables of  and we say that  is closed (or is a combinator) 

if . We write  or  for the term resulting from the 

substitution of  for all free occurrences of  in  subject to the usual proviso about 

renaming bound variables in  to avoid capture of free variables in . 

. 
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The basic axioms of -calculus are the following: 
 

, for any variable  that does not occur free in . 

. 
 

The rules for deriving equations from instances of  and  are the usual ones from 

equational calculus asserting that equality is a congruence for application and lambda-

abstraction. 

Extensional -calculus adds another axiom, which equates all the -terms having the 

same extensional behavior: 
 

, in which  does not occur free in . 
 

If two  -terms are provably equal using the rule , we say that they are -equivalent or 

-convertible (and similarly for  and ). In this work we identify all -equivalent  

-terms, thus every -term in fact represents a class of -equivalent terms. We write 

 when  is -equivalent to . 

Strictly speaking,  means that  reduces to  by exactly one reduction step, 

possibly applied to a subterm of . Frequently, we are interested in whether  can be 

reduced to  by any number of steps. Write  if 

. 

Informally,  if  can be transformed into  by performing zero or more 

reductions and expansions (an expansion is the inverse of a reduction). A typical picture 

is the following: 

 
If a term admits no reductions then it is in normal form. To normalize a term means to 

apply reductions until a normal form is reached. A term has a normal form if it can be 

reduced to a term in normal form. 

A term is in head normal form (hnf, for short) if and only if it looks like this: 

 

in which  is a variable ( ). 



5 
 

Notice that a term in normal form is also in hnf. Furthermore, if 

 

then  must have the form 

 

in which . Thus, the hnf fixes the outer structure of any further 

reductions and the final normal form (if any!). 

A -term is defined if and only if it can be reduced to head normal form; otherwise, it is 

undefined. A term is solvable if and only if there exist variables  and terms 

 such that . It can be proved that a 

term  is solvable if and only if it has a head normal form  if and only if there is a 

reduction sequence only composed of head steps such that  (one writes ). 

The head reduction step of a term  is the (finite or infinite) sequence of terms 

 such that  and  is obtained from  by a -reduction step 

of the head redex of  if such a redex exists; if not,  is in head normal form, and the 

sequence ends with . 

One of the fundamental relationships between the properties of reduction systems is the 

Church-Rosser property that states that reduction in -calculus is confluent; no two 

sequences of reductions, starting from one -term, can reach a distinct normal form. The 

normal form of a term is independent of the order in which reductions are performed. 

For instance,  has two different reduction sequences, both leading to 

the same normal form. The affected subterm is underlined at each step: 

 

 

This property has several important consequences: 

o if  and  is in normal form, then ; if a term can transform into 

normal form through reductions and expansions, then the normal form can be 

reached by reductions alone; 

o if  in which both terms are in normal form, then  If  and  are 

in normal form and are distinct, then . 

Although different reduction sequences cannot yield different normal forms, they can 

yield completely different outcomes; one could terminate whereas the other runs forever. 
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Typically, if  has a normal form and admits an infinite reduction sequence, it contains a 

subterm  having no normal form, and  can be erased by a reduction. 

For example,  -reduces to itself and 

therefore no normal form exist. 

The -calculus is expressive enough to encode Boolean values and natural numbers. 

More generally, all the data structures we may desire in a functional program. These 

encodings allow us to virtually model the whole of functional programming within the 

simple confines of -calculus. An encoding of the Booleans must define the terms true 

(  and false ( ), satisfying (for all terms  and ) 

 

 

The following encoding is usually adopted: 

 

 

We have  by the Church Rosser property, since true and false are distinct normal 

forms. 

All the usual operations on truth values can be defined, so as conditional operator. Here 

conjunction, disjunction, and negation are described: 

and  

or  

not  

The following encoding of the natural numbers is the original one developed by Church. 

Define 

; 

; 

; 

 

in which  is defined by induction as follows: 

- ; 

- . 

Thus, for all , the Church numeral  acts as an iteration ( -times) of its original. 

Using this encoding, successor, addition, and multiplication can be defined immediately: 



7 
 

succ  

sum  

prod  

The operations defined so far are not sufficient to define all computable functions on the 

natural numbers. The secret is to use a fixed-point combinator (FPC), that is a term  

such that , for all -terms . Let us explain the terminology. A fixed-point 

of the function  is any  such that ; here, . To code recursion,  

represents the body of the recursive definition; the law  permits  to be 

unfolded as many times as necessary. Moreover, an FPC  is reducing (resp. -reducing) 

if for any -term  we have  (resp. , in which  represent the 

number of the head reduction steps). 

There exists infinitely-many FPCs. The most well known is due to Haskell B. Curry and 

is defined as follows: 

. 

 ia an FPC but not a reducing-FPC. 

There are other FPCs, such as that of A. Turing: 

 

We indeed have the reduction . 

From  

 

in which , 

we are able to build up a new class of FPCs [this resolves the Problem 6.8.14. in Bar84]. 

After showing some important properties of FPCs (such as one which proves that every 

FPC is solvable but not normalizable) we see that all operations of -calculus can be 

expressed in a reduced version of untyped -calculus, the so called SK-calculus.  

The importance of a fixed-point lies, however, in the fact that they allow us to solve 

equations. Therefore, FPCs are essential tools to represent all computable functions. 

Since -calculus is one of the classical models of computation, along with Turing 

machines and general recursive functions, Chur states that the computable 

functions are precisely those that are -definable. After defining constant, projection, and 

minimization operators, we prove that -calculus has the same power as the partial 

recursive functions, i.e., that all partial recursive functions are -definable. Therefore, the 
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following definition is fundamental. 

Let  be a (partial) function defined on , with values either in  or in . We say 

that  is -definable if there is a -term  such that for all  we have: 

 if  is undefined, then  is not solvable; 

 if , then ; 

 if  (resp. ), then  (resp. ). 

We say that  represents the function  and  is representable by the term . 

The behavior of FPCs are characterized by Böhm-trees ( , for short). We show how to 

progressively compute successive approximations of a term, in a potentially infinite 

partial structure called the Böhm-tree of a -term, which represents the limit  of all  

-reductions issued from a given term. It consists of layers of approximations, each 

approximation corresponding to an hnf. The formal definition of Böhm trees can be 

found with all its details in this thesis. Below, an informal definition of Böhm-tree is 

given. Note that this definition is not an inductive definition of ; the  in 

the tail  of an hnf of a term may be more complicated then the term itself. 

To each  a Böhm-tree, , is associated as follows: 

 if  is solvable then  ( ) and we define: 

 

 

 

                               

i.e., level  of  is known. By iteration we find all levels. 

 otherwise, if  is unsolvable (equivalently, has no hnf) we have: . 
 

Notice that all unsolvable terms have the same , namely . We prove in the thesis that 

all FPCs have the same  with the same infinite extension . 

It is possible to show, by means of induction on the depth of the tree, that the given 

definition of  is compatible with -equivalence, i.e., that  

. 

in which . The converse is not valid. 

Owing to the equivalence of the s, we now propose to provide a method to inductively 

build up infinite FPCs. In particular, we can show how a new FPC (resp. reducing FPC) 
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can be built up from a given FPC (resp. reducing FPC). To show this, we use the  

-term . A first remark is that the term  is an FPC whenever  is. It 

follows that starting with   

 

in which  means  -times, called the Böhm sequence of . The same sequence 

can also be defined as follows in which  is Turing : 

   

   

   for  

Now the question is whether all these 

whether the sequence is free of duplicates [this resolves the Problem 6.8.9. in Bar84]. 

After defining, by induction on , the following set of languages , 

  

  

  

we show that the Böhm sequence contains no duplicates, that is: 

for all  such that , we have . 

For the sequence starting from an arbitrary FPC , it is actually an open problem whether 

the sequence of FPCs  is free of repetition. All we know, applying 
1, is that no two consecutive FPCs in this sequence are  

-convertible, i.e., for every FPC  one has . 

Our next purpose is to build up a new sequence of FPCs starting from the combinators 

, and  as defined above. To do this, we can consider, for any FPC , the following 

sequence: 

 

All these terms are not FPCs, but they are close to being FPCs since for the first two 

terms of the sequence, postfixing the combinatory  turns them into FPCs  and , and 

postfixing an  to all the terms in the sequence, yielding 
                                                           
1 Problem n. 52 in the problem list of: N. Dershowitz, J.P. Jouannaud, J.W. Klop, More problem in 

rewriting, in Rewriting Techniques and Applications (C. Kirchner Ed.), Lectures Notes in Computer 
Science, volume 690, pages 468-487, Springer-Verlag, Berlin, 1993. 
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we obtain a sequence of terms having the same  as any FCP. We refer to the previous 

sequence as the Scott sequence of . 

In particular, we can consider the Scott sequence with  ). In this way, 

we can define the -term  by induction on  as follows: 

   

   

   

All these terms turn out to be FPCs, and in showing that  are indeed FPCs, we 

find, as a bonus, a new FPC-generating vector, turning an old FPC into a new one: 

. Let us call the derivation principle from Böhm, stating that postfixing a  

yields a new FPC: principle . Now we have a second derivation principle, let us call it 

, stating that postfixing to an FPC a vector of terms  yields a new FPC. We 

can arbitrarily apply derivation principles  and , and so obtain, starting from a 

given FPC, a whole branch of new FPCs. 

In this way, we find some schemes and building blocks to construct new fixed-point 

combinators in a modular way. Through one of these schemes we can formulate the so 

called Klop sequence: 

 

All terms of this sequence are FPCs and the sequence coincides (when ) with the 

Böhm and Scott sequences for only the first two elements. 

Since there are several vast spaces of FPCs and there are many ways to derive new FPCs, 

the last question is whether all these FPCs are indeed new. Therefore, we have to prove 

that they are not -equivalent one another. 

Since it is not possible to distinguish FPCs through their Böhm-tree (remember that any 

FPCs have the same ), we use the clocked Böhm-trees (i.e., Böhm-trees in which we 

count the number of head reduction steps): we can discern a clock-like behavior of 

Böhm-trees, that enables us to discriminate the terms in question. 

However, this refined discrimination method does not work for all lambda-terms; only for 

a class of simple terms, that still is fairly extensive. 

Therefore, the following two definitions are essential. 
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For FPC , the clock reduction of  consists of a sequence of head reduction steps  

( -steps) and when no head steps are possible because the term is an hnf (i.e., in the form 

) there is a -step that removes the head context  or  respectively: 

 and . 

We than define simple-terms: a -term  is simple if if either  has no head normal form, 

or the head reduction to head normal form  contracts only 

simple redexes (i.e., a linear or call-by-value redexes), and  are simple terms. 

This notation leads to the following proposition: 

if  and  are simple terms with different clocks, then . 

It is in this way that the non -equivalence of the created fixed-point combinators can be 

shown. 

Several examples can be found in the thesis. Below we write the standard algorithm  for 

discriminate all FPCs: 

(1) take a sequence of FPCs; 

(2) reduce the sequence to a simple term; 

(3) compute the clock reduction of the simple term; 

(4) if all the simple terms have different clock, then FPCs are pairwise different. 
 

We conclude by computing the algorithm for the sequence of FPC  of the 

Scott sequence of , with . 

We first reduce  to a simple term: 

 

where . Then we compute the clock for ,  and . 

For  we have: 

. 

For  we have: 

. 

For  we have: 

 

 

. 
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For all cases, we find: 

. 

 

Therefore, given any two terms  and  of the Scott sequence of , if  then 

. 

By losing some information (but keeping the essential), Figure 1 displays the clocked 

Böhm-trees of the Scott sequence of  
 

 

 

    

 

                

 

                
 

Figure 1  clocked Böhm-tree of  
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